Search for:
EXPERIMENTO DE MACH: Cuerpos reaccionan de forma diferente ante la misma fuerza.
Experimento de Mach
Experimento de Mach – Ensamble de Ideas.

Hemos visto en otros artículos sobre las leyes de Newton que, cuando se aplica una fuerza sobre un cuerpo, la aceleración (es decir, el cambio de velocidad respecto del tiempo) dependerá del sentido de la fuerza. No debemos dejar de lado que también depende de las características del cuerpo que sufre el cambio. 

Experimento de Mach
Fig. 1: No es lo mismo patear , con la misma fuerza, una pelota de papel que una pelota de cuero. Es evidente que la aceleración que experimentarán ambos cuerpos es muy diferente.

El Experimento de Mach explicado

Fue el físico y filósofo austríaco Ernst Mach (1838-1916) quien logró dar una explicación -en base a sus experimentos- sobre por qué los cuerpos reaccionan de forma diferente ante la misma fuerza, dependiendo de sus características. ¿Y cómo lo hizo? Mach colocó dos masas diferentes (en el esquema de la figura 2, están representadas con las bolas A y B) unidas por un resorte. Luego, alejó los cuerpos uno de otro. Al soltarlos, se dio cuenta que, sin importar que la fuerza experimentada por las bolas era la misma (la que llamamos fuerza elástica), uno de los cuerpos sufría una aceleración mayor que la del otro.

Mach se dio cuenta que en su experimento no importaba la distancia con la que separaba las bolas. En todos los caso, la aceleración sufrida por el cuerpo de menor masa era mayor. Asimismo, la aceleración sufrida por el cuerpo de mayor masa era menor.

La relación entre las aceleraciones era siempre la misma: a mayor masa de los cuerpos, menor era su aceleración. Llamó masa inercial esa característica que los diferenciaba.

Fig.2: Experimento de Mach.

Su experimento continuó un poco más: colocó un tercer cuerpo en interacción con el primero, observando siempre la diferencia de aceleraciones entre un cuerpo y el otro. Hizo lo mismo con un cuarto cuerpo y con un quinto. En todos los casos, calculó la relación entre la masa inercial del cuerpo A respecto de los otros que iba colocando. Fue así que definió “1 kilogramo” como masa patrón.

Como conclusión, podemos decir que Mach se dio cuenta que la masa es un valor característico de cada cuerpo y es la responsable de que los cuerpos se aceleren de forma diferente ante la misma fuerza aplicada sobre ellos. Obviamente, si ambos cuerpos presentan la misma masa, su aceleración será la misma cuando se les aplique la misma fuerza.

Matemáticamente, podríamos expresar esto como:

\( m_a\cdot a_a=m_b\cdot a_b\)

Esto significa que el producto de la masa por la aceleración vale siempre lo mismo para ambos cuerpos cuando la fuerza aplicada sobre ellos es la misma.


Actividades:

  • Si se aplica una fuerza de 43 N a un cuerpo de 3 kg y luego se aplica la misma fuerza a un cuerpo de 5 kg, ¿cuál de los dos alcanzará una mayor velocidad al cabo de 10 segundos?
  • ¿Cuál es la evidente relación entre el experimento de Mach y la segunda ley de Newton? Te sugerimos darle un vistazo a nuestro artículo sobre Leyes de Newton.
Disponible en ensambledeideas.com/leyesdenewton/

LAS 3 LEYES DE NEWTON

Las leyes de Newton

Las leyes de Newton son, quizás, las más reconocidas en mundo de la Física, en especial, en el de la física clásica. Su antigüedad no hace más que sorprendernos al poder explicar movimientos macroscópicos de la vida cotidiana y así permitirnos dar un paso adelante en la compresión de nuestro universo.

leyes de newton
Leyes de Newton

Primera Ley de Newton: EL PRINCIPIO DE INERCIA.

Todo cuerpo tiende a mantener su movimiento rectilíneo uniforme a menos que una fuerza lo detenga o acelere“. Esto significa que si un objeto (sin rozamiento ni con el piso, ni con el aire ni ningún otro sistema material) se está moviendo con velocidad constante permanecerá así eternamente, a menos que alguna fuerza sea capaz de cambiar esa velocidad, ya sea deteniéndolo o acelerándolo. Por el mismo motivo, si un cuerpo está quieto (velocidad igual a cero), entonces se mantendrá inmóvil al menos que una fuerza lo saque de ese estado.

Veamos algunos ejemplos:

  • En el espacio, como no hay aire ni hay un piso, los cometas y asteroides pueden continuar su movimiento rectilíneo si no se encuentran bajo los efectos gravitacionales de algún astro cercano, como el Sol o un planeta. Continuarán así eternamente, hasta que una fuerza cambie su velocidad. Para alumnos avanzados: cambiar el vector velocidad no necesariamente significa cambiar la intensidad, sino que también puede cambiar la dirección, como puede suceder en presencia de una aceleración radial.
  • Si arrojo una bola por el suelo, las fuerzas de rozamiento lo irán deteniendo, es decir, la bola seguiría eternamente con velocidad constante, pero la presencia de una fuerza la detuvo. Si el piso fuese de hielo, la fuerza de rozamiento sería menor y, por lo tanto, la bola alcanzaría mayor distancia.

Segunda ley de Newton: EL PRINCIPIO DE MASA

La segunda ley nos afirma que la fuerza es el producto de la masa por la aceleración, en otras palabras, la masa y la aceleración son inversamente proporcionales. ¿Qué significa esto? A mayor masa, menor aceleración cuando se le imprime una fuerza; por el contrario, a menor masa, mayor será la aceleración producida por esa fuerza.
Una forma sencilla de expresar lo enunciado en el párrafo anterior es la ecuación:

\( \overrightarrow{F}=m\cdot \overrightarrow{a} \)

Para explicar esta ley, imaginemos que un mosquito golpea contra un autobús en movimiento. La masa del autobús es mucho mayor a la del mosquito, por lo que el mosquito sufrirá una desaceleración de mayor magnitud que la sufrida por el autobús, que prácticamente no ve afectado su movimiento.
Otro ejemplo, un poco más cuantitativo, puede observarse en un ejemplo práctico de la ecuación presentada más arriba.

¿Cuál será la aceleración producida por una fuerza de 24 N cuando se aplica sobre un cuerpo de 3 kg?

De la ecuación dada, podemos despejar la aceleración. Teniendo en cuenta (para este ejemplo) los módulos de la fuerza y la aceleración, nos queda:

\( \overrightarrow{F}=m\cdot \overrightarrow{a}\Rightarrow \vec{a}=\frac{\vec{F}}{m} \)

De allí:

\( \left | \vec{a} \right |=\frac{24N}{3kg}=8\frac{m}{^{s^{2}}} \)

Tercera ley de Newton: PRINCIPIO DE ACCIÓN Y REACCIÓN

Esta es, quizás la ley menos intuitiva. Nos expresa que “Al aplicar una fuerza sobre un objeto, éste nos devuelve la misma fuerza pero en sentido contrario”. ¡¿Qué?! Veamos.

Imagínate que te pones patines en tus pies y, luego, haces fuerza sobre una pared. Sentirás que una fuerza te tira hacia atrás, haciendo que probablemente te caigas. Éste es un hermoso ejemplo de la tercera ley de Newton. Puedes notar también una reacción al disparar un arma, como una escopeta: éste te tira levemente hacia atrás.

Si te sirvió este artículo déjanos un comentario. Y si te gustan los temas de física explora todo nuestro contenido de nuestro blog sobre esa área de estudio en este link. También puedes mirar los vídeos sobre física en nuestro canal de YouTube.

Las 4 FUERZAS FUNDAMENTALES de la naturaleza.

Existen cuatro fuerzas fundamentales de la naturaleza: la fuerza nuclear débil. fuerza nuclear fuerte y electromagnética , que logran explicar muchos de los fenómenos con los que los físicos se han encontrado en los últimos años. En este artículo analizaremos estas cuatro fuerzas para descubrir cuáles son, sus características y cómo actúan cada una de ellas.

De las cuatro fuerzas fundamentales de la naturaleza, es la gravitatoria la más incomprendida. Las demás han podido ser cuantificadas, es decir, han podido ser descriptas matemáticamente. Ya han pasado más de tres siglos desde que Newton empezó a entender cómo trabaja la fuerza gravitatoria, pero -sin duda- sigue siendo un misterio a dos voces. ¿Cómo? ¿Los científicos siguen estudiando sus enigmas? Correcto. Una hipótesis que se baraja constantemente es la idea de que existe una “quinta” fuerza (que se supone que puede ser la antimateria) que podría servir como puente entre la fuerza gravitatoria y las demás fuerzas.

¡Entendamos cada uno de ellos!

La fuerza nuclear débil

Es la responsable de fenómenos como la desintegración radiactiva y la producción de radiación y energía calórica por el Sol en los procesos de fisión nuclear.

La fuerza nuclear fuerte

Es responsable de la estabilidad del núcleo atómico, ya que permite que los protones no se rechacen entre sí. Analizando mejor la situación, cuando dos protones se encuentran muy cerca uno de otro, la fuerza eléctrica repulsiva entre ellos es muy intensa. Sin embargo, cuando están lo suficientemente cerca, comienza a actuar la fuerza nuclear fuerte, que los mantiene unidos. Cuando el núcleo es demasiado grande, se vuelve inestable, y a pesar de la existencia de esta fuerza, algunos átomos son capaces de desintegrarse y transformarse en partículas más sencillas y estables.

Fisión Nuclear.
Modelo de fisión nuclear, fenómeno en el que el átomo se desintegra, venciendo las fuerzas nucleares fuertes.

¿Cuándo actúa la fuerza nuclear fuerte?

Esta fuerza fundamental de la naturaleza aparece cuando la distancia entre las partículas es menor que el radio de las mismas. ¡Espera! ¡Un momento! ¡Digámoslo un poco más fácil! Quizás, con algunos dibujos, esto se entienda mejor. Dos protones presentan la misma carga eléctrica (positiva), por lo que se separan debido a la fuerza eléctrica repulsiva que experimentan, tal como se ve en el siguiente modelo:

Fuerza Eléctrica.
Fuerza Eléctrica Repulsiva (Fer) entre protones, de carga positiva.

Sin embargo, cuando ambas partículas se encuentran demasiado cerca, aparece entre ellas la fuerza nuclear fuerte. Observemos la imagen siguiente, en la cual se marca el llamado radio del protón:

Radio del protón.
Radio del protón.

La distancia que separa a los protones debe ser menor que este radio para que aparezca la fuerza nuclear fuerte, la cual es 100 veces mayor que la fuerza eléctrica. Por esta razón, los protones se mantienen unidos en el núcleo.

Fuerzas fundamentales de la naturaleza: FUERZA NUCLEAR FUERTE.
Fuerza Nuclear fuerte entre protones. La FNF aparece cuando la distancia que separa a los protones es menor que el radio del protón.

La fuerza electromagnética

La fuerza electromagnética es la fuerza fundamental del universo responsable de, por un lado, la fuerza electrostática generada entre partículas en reposo y, por el otro, el efecto combinado entre las fuerzas magnéticas y eléctricas que actúan entre cargas que se mueven. Pudiendo ser tanto atractiva como repulsiva, es una interacción más fuerte que la gravitatoria, la siguiente fuerza fundamental de la naturaleza que veremos.

Fuerzas fundamentales de la naturaleza: FUERZA ELECTROMAGNÉTICA.
La fuerza electromagnética es, en conclusión, la interacción entre partículas con carga eléctrica.

La interacción gravitatoria

La interacción gravitatoria es una fuerza fundamental de la naturaleza que es únicamente de carácter atractivo, generada por todos los cuerpos que posean masa. Es una fuerza muy débil a nivel atómico, mas su importancia es muy evidente en cuerpos masivos que se encuentran a grandes distancias, tales como las estrellas y los planetas. Es mejor conocida como fuerza de gravedad.

¿Fuerza de gravedad? Eso es muy conocido por todos: con tan sólo pensar en la manzana que se le cayó a Newton por la cabeza ya sabemos de qué estamos hablando. ¡Ah! ¡Por cierto, ese cuento es mentira! Jamás ha ocurrido, pero sigue siendo parte del imaginario de todos. ¿O no? La fuerza de gravedad es la fuerza fundamental de la naturaleza responsable de esa “hipotética” caída de la manzana.

Fuente

Sears y Zemansky. Hugh D. Young, Roger A. Freedman, A. Lewis Ford; “Física universitaria con física moderna 1”; Ed. Pearson Educación; disponible en: https://www.pearsonenespanol.com/mexico/educacion-superior/sears_index/sears-fisica-universitaria-1