Transmutación nuclear explicada fácil

Transmutación Nuclear

El campo de la química nuclear sería algo estrecho si el estudio se limitara a los elementos radiactivos naturales. Un experimento llevado a cabo por Rutherford en 1919, sin embargo, sugirió la posibilidad de observar la radiactividad artificial. Cuando una muestra de nitrógeno se bombardeó con partículas alpha, se llevó a cabo la siguiente reacción:

 Se produjo un isótopo de oxígeno-17 con la emisión de un protón.
Se produjo un isótopo de oxígeno-17 con la emisión de un protón.

La reacción presentada puede abreviarse como:

transmutacion nuclear

Puede observarse que la partícula que se bombardea se escribe primero en el paréntesis y después la partícula que se emite. En este caso, se bombardea con partículas alpha o Helio-4 y se emite un protón, de carga eléctrica positiva.

Esta reacción demostró por primera vez la posibilidad de convertir un elemento en otro (es decir, la llamada transmutación nuclear.

Aunque los elementos ligeros generalmente no son radiactivos, pueden serlo si se bombardea sus núcleos con partículas apropiadas. El isótopo radiactivo de 14C, por ejemplo, puede prepararse bombardeando nitrógeno-14 con neutrones. Este proceso se explicará más detalladamente en el próximo eje porque será de vital importancia para la comprensión de los temas a tratar.

Por su parte, el tritio, hidrógeno de A = 3, se prepara mediante el siguiente bombardeo:

Transmutación Nuclear del Litio-6

El tritio se descompone con la emisión de partículas β:

transmutacion nuclear

Muchos isótopos sintéticos se preparan usando neutrones como proyectiles. Esto es particularmente conveniente porque los neutrones no llevan cargas y por lo tanto no son repelidos por los núcleos. La situación es diferente cuando los proyectiles son partículas cargadas positivamente; por ejemplo, cuando se utilizan protones o partículas α, como en:

transmutacion nuclear

Como se observa en la ecuación, el alumninio-27 es “bombardeado” con partículas alpha, también llamadas helio-4, realizando una transmutación nuclear que da origen a una partícula de fósforo-30, liberando un neutrón.

Para reaccionar con el núcleo de aluminio, las partículas alpha deben tener una considerable energía cinética para poder superar la repulsión electrostática entre ellas mimas y los átomos blancos del bombardeo.

Te recomendamos la lectura previa de los primeros tres artículos de la serie Radiactividad:

RADIACTIVIDAD
RAYOS ALPHA, BETA Y GAMMA 
Serie de decaimiento radiactivo
Tiempo de Vida Media

Para finalizar, queremos presentarte nuestro canal de YouTube, paara que hacer link y descubrir los cientos de vídeos sobre ciencias y otras materias que tenemos para ofrecerte.


Fuentes:

Chang, Raymond (4ta. Edición. 1992). Química, p. 40, pp. 561-562, pp. 962-969, pp. 982-985. Chile: Editorial Mc. Graw Hill.

Franco, Ricardo; Arriazu, Francisco López; Serafini, Gabriel D. (2008). Física y Química. (Intercambios de energía. Estructura y transformaciones de la materia.), pp. 161-164. Buenos Aires, Argentina: Editorial Santillana.

Rolando, Aída; Jellinek, Mario René (Febrero, 1995). Química 4, pp. 441-460. Bogotá, Colombia: A-Z Editora.

Sears, Francis W.; Zemansky, Mark W. (6ta Edición, 1988). University Physics, pp. 1040-1048, pp. 1064-1065. Estados Unidos: Addison-Wesley.

Young, Hugh D.; Freedman, Roger A. (12da. Edición. 2009). Física Universitaria, con física moderna (Volumen 2), pp. 1478-1492. México: Pearson Educación.